Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
In Vitro Cell Dev Biol Anim ; 58(7): 610-618, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35867318

RESUMO

Insect contractile cells frequently appear at an early phase of cell culture, but in most cases, they disappear before a continuous cell line is established, so the cell line ceases to contract. Continuous contractile insect cell lines are currently available from only one species each of Hymenoptera and Diptera. Here, we obtained a new cell line that contracted long after being established as a continuous cell line. The cell line contracted for a short period at an early phase of insect cell culture before a continuous cell line was established, but then did not contract again for several years. After this cell line entered the continuous growth phase, it produced spontaneously contractile tissues for about 4 mo but stopped contracting again. This is the first instance of a cell line that contracted after its establishment as a non-contractile continuous cell line. It is unclear whether the contractile cells survive or die after contraction ceases at an early phase of cell culture, and our results indicate that potential contractile cells survive for years after they stop to contract. The cells of this line sometimes produced complex contractile structures, such as sheet-like tissues. Only a few continuous cell lines have been derived from scarabaeid beetles. The new continuous cell line was derived from the culture of the fat bodies of the scarab beetle Anomala cuprea, which is a pest in the agriculture and forestry of Japan. The population doubling time of the new cell line was 2.5 d and thus it grows very rapidly among coleopteran continuous cell lines. Our new cell line will facilitate research on the physiology and pathology of Coleoptera, including scarab beetles, and may also contribute to research on invertebrate muscles.


Assuntos
Besouros , Animais , Técnicas de Cultura de Células , Linhagem Celular
2.
Biosci Biotechnol Biochem ; 85(9): 1945-1952, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34244709

RESUMO

Various diterpene synthases have been functionally identified in cultivated rice (Oryza sativa). These are the homologs of ent-copalyl diphosphate (ent-CDP) synthase and ent-kaurene synthase (KS) that are responsible for the biosynthesis of gibberellins, diterpenoid phytohormones. We isolated a cDNA encoding full-length OsKSL12, a previously uncharacterized KS like (KSL) enzyme that consists of a ß-domain and an α-domain with an active center, but lacks an N-terminal γ-domain. Functional analysis using a bacterial expression system showed that recombinant OsKSL12 converted ent-CDP into ent-manool or ent-13-epi-manool. Comparative genomics revealed that functional OsKSL12 homologs exist in diverse wild species in the Oryzeae-Oryza nivara (Oryza rufipogon), Oryza coarctata, Oryza granulata, Leersia perrieri, and Leersia tisseranti. KSL12 homologs in O. granulata, L. perrieri, and L. tisseranti preferentially reacted with geranylgeranyl diphosphate rather than ent-CDP, resulting in geranyllinalool rather than ent-manool or ent-13-epi-manool as the main product, meaning that KSL12 functionally diversified during evolution in the Oryzeae.


Assuntos
Alquil e Aril Transferases/análise , Diterpenos/química , Oryza/enzimologia , Sequência de Bases , Clonagem Molecular , DNA Complementar/genética , Evolução Molecular , Genoma de Planta , Oryza/genética , Filogenia , Domínios Proteicos
3.
J Insect Physiol ; 117: 103912, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31301311

RESUMO

The peritrophic membrane (or peritrophic matrix: PM) is a thin membranous structure that lies along the midgut epithelium in the midgut lumen and consists of chitin and proteins. PM exists between ingested food material and midgut epithelium cells and it is on the frontline of insect-plant and insect-microbe interactions. Therefore, proteins that play major roles in plant defense against herbivorous insects and in microbial attack on insects should penetrate, destroy or modify the PM to accomplish their roles. Recently, it has become clear that some proteins crucial to plant defense or microbial attack have the PM as their primary target. In addition, several plant defense proteins have been reported to affect the PM, although it is still unclear whether the PM is their primary target. This review introduces several of these proteins: fusolin and enhancin, two proteins produced by insect viruses that greatly enhance infection of the viruses by disrupting the PM; the MLX56 family proteins found in mulberry latex as defense proteins against insect herbivores, which modify the PM to a thick structure that inhibits digestive processes; Mir1-CP, a defense cysteine protease from maize that inhibits the growth of insects at very low concentrations and degrades the PM structures; and chitinases and lectins. The importance, necessary characteristics, and modes of action of PM-targeting proteins are then discussed from a strategic point of view, by spotlighting the importance of selective permeability of the PM. Finally, the review discusses the possibility of applying PM-targeting proteins for the control of pest insects.


Assuntos
Interações Hospedeiro-Patógeno , Insetos/virologia , Animais , Trato Gastrointestinal , Controle de Insetos , Proteínas de Plantas , Proteínas Virais
4.
Arch Virol ; 164(1): 17-25, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30225520

RESUMO

Oral inoculation of entomopoxvirus spindles, microstructures composed of fusolin protein, causes disruption of the peritrophic matrix (PM), a physical barrier against microbe infection, in the insect midgut. Although the atomic structure of fusolin has been determined, little has been directly elucidated of the mechanism of disruption of the PM. In the present study, we first performed an immunohistochemical examination to determine whether fusolin acts on the PM directly or indirectly in the midgut of Bombyx mori larvae that were inoculated with spindles of Anomala cuprea entomopoxvirus. This revealed that the PM, rather than the midgut cells, was the attachment site for fusolin. Fusolin broadly attached to the PM from the anterior to the posterior region, both to its ectoperitrophic and endoperitrophic surfaces and within the PM. These results likely explain why the whole of the PM is rapidly disintegrated. Second, we administered protease inhibitors mixed with spindles and observed decreased midgut protease activity and reduced disruption of the PM. This suggests that midgut protease(s) is also positively involved in PM disruption. Based on the present results, we propose an overall mechanism for the disruption of the PM by administration of fusolin.


Assuntos
Bombyx/efeitos dos fármacos , Trato Gastrointestinal/efeitos dos fármacos , Peptídeo Hidrolases/metabolismo , Proteínas Virais/farmacologia , Administração Oral , Animais , Inseticidas/farmacologia , Larva/efeitos dos fármacos
5.
Biochem Biophys Res Commun ; 503(3): 1221-1227, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30005875

RESUMO

Cultivated rice (Oryza sativa; Os) produces a variety of labdane-related diterpenoids; not only phytohormone gibberellins (GAs) but also phytoalexins for defense including phytocassanes, momilactones and oryzalexins. Their carbon skeleton diterpenes are constructed from geranylgeranyl diphosphate via ent-copalyl diphosphate (ent-CDP) or its diastereomer syn-CDP. These two-step reactions are successively catalyzed by homologs of the two diterpene synthases, ent-CDP synthase (ent-CPS) and ent-kaurene synthase (KS) that are responsible for the biosynthesis of GAs; e.g. OsCPS4 and OsKSL8 that are involved in the biosynthesis of oryzalexin S, a rice phytoalexin. Oryza brachyantha (Ob) is the most distant wild rice species from Os among the Oryza genus. We previously reported that the Ob genome contains ObCPS_11g, ObKSL8-a, ObKSL8-b and ObKSL8-c for specialized metabolism at a locus similar to the OsKSL8 locus on chromosome 11. These Ob genes are closely related to OsCPS4 and OsKSL8, respectively. We herein characterize the diterpene synthase genes in Ob, using functional analyses and expression analysis. Recombinant OsKSL8 and ObKSL8-a showed the same in vitro function when syn-CDP or normal-CDP were used as substrates. Nonetheless, our results suggest that Ob produces normal-CDP-related diterpenoid phytoalexins, presumably via ObKSL8-a, while Os produces a syn-CDP-related phytoalexin, oryzalexin S, via OsKSL8. This difference must be due to the kinds of CPS that are present in each species; Os has OsCPS4 encoding syn-CPS, while Ob has ObCPS_11g encoding normal-CPS. Thus, we propose the evolutionary history underlying oryzalexin S biosynthesis: the gain of a syn-CPS was a critical event allowing the biosynthesis of oryzalexin S.


Assuntos
Alquil e Aril Transferases/genética , Diterpenos/metabolismo , Oryza/enzimologia , Oryza/genética , Sesquiterpenos/metabolismo , Alquil e Aril Transferases/metabolismo , Oryza/metabolismo , Filogenia , Sementes/enzimologia , Sementes/genética , Sesquiterpenos/química , Especificidade da Espécie , Fitoalexinas
6.
Biochem Biophys Res Commun ; 480(3): 402-408, 2016 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-27771250

RESUMO

Cultivated rice (Oryza sativa) possesses various labdane-related diterpene synthase genes, homologs of ent-copalyl diphosphate synthase (CPS) and ent-kaurene synthase (KS) that are responsible for the biosynthesis of phytohormone gibberellins. The CPS homologs and KS like (KSL) homologs successively converted geranylgeranyl diphosphate to cyclic diterpene hydrocarbons via ent-copalyl diphosphate or syn-copalyl diphosphate in O. sativa. Consequently, a variety of labdane-related diterpenoids, including phytoalexin phytocassanes, momilactones and oryzalexins, have been identified from cultivated rice. Our previous report indicated that the biosynthesis of phytocassanes and momilactones is conserved in Oryza rufipogon, the progenitor of Asian cultivated rice. Moreover, their biosynthetic gene clusters, containing OsCPS2 and OsKSL7 for phytocassane biosynthesis and OsCPS4 and OsKSL4 for momilactone biosynthesis, are also present in the O. rufipogon genome. We herein characterized O. rufipogon homologs of OsKSL5, OsKSL6, OsKSL8 responsible for oryzalexin S biosynthesis, and OsKSL10 responsible for oryzalexins A-F biosynthesis, to obtain more evolutionary insight into diterpenoid biosynthesis in O. sativa. Our phytoalexin analyses showed that no accumulation of oryzalexins was detected in extracts from O. rufipogon leaf blades. In vitro functional analyses indicated that unlike OsKSL10, O. rufipogon KSL10 functions as an ent-miltiradiene synthase, which explains the lack of accumulation of oryzalexins A-F in O. rufipogon. The different functions of KSL5 and KSL8 in O. sativa japonica to those in indica are conserved in each type of O. rufipogon, while KSL6 functions (ent-isokaurene synthases) are well conserved. Our study suggests that O. sativa japonica has evolved distinct specialized diterpenoid metabolism, including the biosynthesis of oryzalexins.


Assuntos
Alquil e Aril Transferases/genética , Evolução Molecular , Genes de Plantas/genética , Oryza/classificação , Oryza/genética , Sequência Conservada , Genoma de Planta/genética , Homologia de Sequência do Ácido Nucleico , Especificidade da Espécie
7.
Plant J ; 87(3): 293-304, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27133567

RESUMO

Plants frequently possess operon-like gene clusters for specialized metabolism. Cultivated rice, Oryza sativa, produces antimicrobial diterpene phytoalexins represented by phytocassanes and momilactones, and the majority of their biosynthetic genes are clustered on chromosomes 2 and 4, respectively. These labdane-related diterpene phytoalexins are biosynthesized from geranylgeranyl diphosphate via ent-copalyl diphosphate or syn-copalyl diphosphate. The two gene clusters consist of genes encoding diterpene synthases and chemical-modification enzymes including P450s. In contrast, genes for the biosynthesis of gibberellins, which are labdane-related phytohormones, are scattered throughout the rice genome similar to other plant genomes. The mechanism of operon-like gene cluster formation remains undefined despite previous studies in other plant species. Here we show an evolutionary insight into the rice gene clusters by a comparison with wild Oryza species. Comparative genomics and biochemical studies using wild rice species from the AA genome lineage, including Oryza barthii, Oryza glumaepatula, Oryza meridionalis and the progenitor of Asian cultivated rice Oryza rufipogon indicate that gene clustering for biosynthesis of momilactones and phytocassanes had already been accomplished before the domestication of rice. Similar studies using the species Oryza punctata from the BB genome lineage, the distant FF genome lineage species Oryza brachyantha and an outgroup species Leersia perrieri suggest that the phytocassane biosynthetic gene cluster was present in the common ancestor of the Oryza species despite the different locations, directions and numbers of their member genes. However, the momilactone biosynthetic gene cluster evolved within Oryza before the divergence of the BB genome via assembly of ancestral genes.


Assuntos
Oryza/metabolismo , Proteínas de Plantas/metabolismo , Sesquiterpenos/metabolismo , Diterpenos/metabolismo , Regulação da Expressão Gênica de Plantas , Família Multigênica/genética , Família Multigênica/fisiologia , Oryza/genética , Proteínas de Plantas/genética , Fitoalexinas
8.
Biochem Biophys Res Commun ; 460(3): 766-71, 2015 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-25824047

RESUMO

The rice genome contains a family of kaurene synthase-like (OsKSL) genes that are responsible for the biosynthesis of various diterpenoids, including gibberellins and phytoalexins. While many OsKSL genes have been functionally characterized, the functionality of OsKSL2 is still unclear and it has been proposed to be a pseudogene. Here, we found that OsKSL2 is drastically induced in roots by methyl jasmonate treatment and we successfully isolated a full-length cDNA for OsKSL2. Sequence analysis of the OsKSL2 cDNA revealed that the open reading frame of OsKSL2 is mispredicted in the two major rice genome databases, IRGSP-RAP and MSU-RGAP. In vitro conversion assay indicated that recombinant OsKSL2 catalyzes the cyclization of ent-CDP into ent-beyerene as a major and ent-kaurene as a minor product. ent-Beyerene is an antimicrobial compound and OsKSL2 is induced by methyl jasmonate; these data suggest that OsKSL2 is a functional ent-beyerene synthase that is involved in defense mechanisms in rice roots.


Assuntos
Alquil e Aril Transferases/genética , Genes de Plantas , Oryza/genética , Alquil e Aril Transferases/química , Alquil e Aril Transferases/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Cloroplastos/enzimologia , Primers do DNA , DNA Complementar , Dados de Sequência Molecular , Proteínas Recombinantes/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos
9.
Proc Natl Acad Sci U S A ; 112(13): 3973-8, 2015 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-25787255

RESUMO

The great benefits that chemical pesticides have brought to agriculture are partly offset by widespread environmental damage to nontarget species and threats to human health. Microbial bioinsecticides are considered safe and highly specific alternatives but generally lack potency. Spindles produced by insect poxviruses are crystals of the fusolin protein that considerably boost not only the virulence of these viruses but also, in cofeeding experiments, the insecticidal activity of unrelated pathogens. However, the mechanisms by which spindles assemble into ultra-stable crystals and enhance virulence are unknown. Here we describe the structure of viral spindles determined by X-ray microcrystallography from in vivo crystals purified from infected insects. We found that a C-terminal molecular arm of fusolin mediates the assembly of a globular domain, which has the hallmarks of lytic polysaccharide monooxygenases of chitinovorous bacteria. Explaining their unique stability, a 3D network of disulfide bonds between fusolin dimers covalently crosslinks the entire crystalline matrix of spindles. However, upon ingestion by a new host, removal of the molecular arm abolishes this stabilizing network leading to the dissolution of spindles. The released monooxygenase domain is then free to disrupt the chitin-rich peritrophic matrix that protects insects against oral infections. The mode of action revealed here may guide the design of potent spindles as synergetic additives to bioinsecticides.


Assuntos
Fatores de Virulência/química , Vírus/química , Sequência de Aminoácidos , Animais , Domínio Catalítico , Quitina/química , Cristalização , Cristalografia por Raios X , Dissulfetos/química , Insetos , Inseticidas/química , Substâncias Macromoleculares , Oxigenases de Função Mista/química , Modelos Moleculares , Dados de Sequência Molecular , Oxigênio/química , Oxigenases/química , Polissacarídeos , Poxviridae/metabolismo , Estrutura Terciária de Proteína , Proteínas Virais/química , Virulência , Fatores de Virulência/fisiologia
10.
Org Lett ; 17(5): 1252-5, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25705923

RESUMO

A Pd-catalyzed hydrogenation of potassium (3,3,3-trifluoroprop-1-yn-1-yl)trifluoroborate providing either the (Z)- or (E)-isomer of the vinylborate in >98% purity is described. The initially formed (Z)-isomer of the alkene is transformed to the (E)-isomer with time, irrespective of the catalyst used; coupling with bromo- and iodoarenes provides a variety of (Z)- or (E)-ß-trifluoromethylstyrenes. Also, a safe synthesis of the alkynyltrifluoroborate from HFC-245fa and BF3·OEt2 has been described.


Assuntos
Alcenos/química , Boratos/síntese química , Hidrocarbonetos Fluorados/química , Hidrocarbonetos Halogenados/síntese química , Estirenos/química , Estirenos/síntese química , Boratos/química , Catálise , Hidrocarbonetos Fluorados/síntese química , Hidrocarbonetos Halogenados/química , Hidrogenação , Isomerismo , Estrutura Molecular , Paládio/química , Estereoisomerismo
11.
J Exp Bot ; 66(1): 369-76, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25336684

RESUMO

Gibberellins (GAs) are diterpenoid phytohormones that regulate various aspects of plant growth. Tetracyclic hydrocarbon ent-kaurene is a biosynthetic intermediate of GAs, and is converted from geranylgeranyl diphosphate, a common precursor of diterpenoids, via ent-copalyl diphosphate (ent-CDP) through successive cyclization reactions catalysed by two distinct diterpene synthases, ent-CDP synthase and ent-kaurene synthase. Rice (Oryza sativa L.) has two ent-CDP synthase genes, OsCPS1 and OsCPS2. It has been thought that OsCPS1 participates in GA biosynthesis, while OsCPS2 participates in the biosynthesis of phytoalexins, phytocassanes A-E, and oryzalexins A-F. It has been shown previously that loss-of-function OsCPS1 mutants display a severe dwarf phenotype caused by GA deficiency despite possessing another ent-CDP synthase gene, OsCPS2. Here, experiments were performed to account for the non-redundant biological function of OsCPS1 and OsCPS2. Quantitative reverse transcription-PCR (qRT-PCR) analysis showed that OsCPS2 transcript levels were drastically lower than those of OsCPS1 in the basal parts, including the meristem of the second-leaf sheaths of rice seedlings. qRT-PCR results using tissue samples prepared by laser microdissection suggested that OsCPS1 transcripts mainly localized in vascular bundle tissues, similar to Arabidopsis CPS, which is responsible for GA biosynthesis, whereas OsCPS2 transcripts mainly localized in epidermal cells that address environmental stressors such as pathogen attack. Furthermore, the OsCPS2 transgene under regulation of the OsCPS1 promoter complemented the dwarf phenotype of an OsCPS1 mutant, oscps1-1. The results indicate that transcripts of the two ent-CDP synthase genes differentially localize in rice plants according to their distinct biological roles, OsCPS1 for growth and OsCPS2 for defence.


Assuntos
Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Oryza/enzimologia , Oryza/genética , Proteínas de Plantas/genética , Alquil e Aril Transferases/química , Sequência de Aminoácidos , Dados de Sequência Molecular , Oryza/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Distribuição Tecidual
12.
Virology ; 452-453: 95-116, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24606687

RESUMO

Complete genome sequence of Anomala cuprea entomopoxvirus, which belongs to the genus Alphaentomopoxvirus, including its terminal hairpin loop sequences, is reported. This is the first genome sequence of Alphaentomopoxvirus reported, and hairpin loops in entomopoxviruses have not previously been sequenced. The genome is 245,717 bp, which is smaller than had previously been estimated for Alphaentomopoxvirus. The inverted terminal repeats are quite long, and experimental results suggest that one genome molecule has one type of hairpin at one end and another type at the other end. The genome contains unexpected ORFs, e.g., that for the ubiquitin-conjugating enzyme E2 of eukaryotes. The BIR and RING domains found in a single ORF for an inhibitor of apoptosis in baculoviruses and entomopoxviruses occurred in two different, widely separated ORFs. Furthermore, an ORF in the genome contains a serpin domain that was previously found in vertebrate poxviruses for apoptosis inhibition but not in insect viruses.


Assuntos
Apoptose , Replicação do DNA , Entomopoxvirinae/genética , Genoma Viral , Insetos/citologia , Sequências Repetidas Invertidas , Infecções por Poxviridae/veterinária , Proteínas Virais/metabolismo , Animais , Sequência de Bases , DNA Viral/química , DNA Viral/genética , DNA Viral/metabolismo , Entomopoxvirinae/química , Entomopoxvirinae/fisiologia , Insetos/virologia , Dados de Sequência Molecular , Infecções por Poxviridae/fisiopatologia , Infecções por Poxviridae/virologia , Proteínas Virais/química , Proteínas Virais/genética
13.
Physiol Plant ; 150(1): 55-62, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23621683

RESUMO

A variety of labdane-related diterpenoids, including phytocassanes, oryzalexins and momilactones, were identified as phytoalexins in rice (Oryza sativa L.). Momilactone B was also isolated as an allelochemical exuded from rice roots. The biosynthetic genes of these phytoalexins have been identified, including six labdane-related diterpene cyclase genes such as OsCPS2, OsCPS4, OsKSL4, OsKSL7, OsKSL8 and OsKSL10. Here we identified an OsCPS4 knockdown mutant, cps4-tos, by screening Tos17 mutant lines using polymerase chain reaction. OsCPS4 encodes a syn-copalyl diphosphate synthase responsible for momilactones and oryzalexin S biosynthesis. Because Tos17 was inserted into the third intron of OsCPS4, the mature OsCPS4 mRNA was detected in the cps4-tos mutant as well as the wild type. Nevertheless, mature OsCPS4 transcript levels in the cps4-tos mutant were about one sixth those in the wild type. The cps4-tos mutant was more susceptible to rice blast fungus than the wild type, possibly due to lower levels of momilactones and oryzalexin S in the mutant. Moreover, co-cultivation experiments suggested that the allelopathic effect of cps4-tos against some kinds of lowland weeds was significantly lower than that of the wild type, probably because of lower momilactone content exuded from cps4-tos roots. A reverse-genetic strategy using the cps4-tos mutant showed the possible roles of momilactones not only as phytoalexins but also as allelopathic substances.


Assuntos
Alquil e Aril Transferases/química , Diterpenos/metabolismo , Lactonas/química , Oryza/química , Oryza/fisiologia , Proteínas de Plantas/fisiologia , Sesquiterpenos/síntese química , Alquil e Aril Transferases/genética , Alelopatia , Resistência à Doença/genética , Técnicas de Silenciamento de Genes , Mutagênese Insercional , Oryza/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Reação em Cadeia da Polimerase , Retroelementos , Sesquiterpenos/farmacologia , Fitoalexinas
14.
Pest Manag Sci ; 70(1): 46-54, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23424042

RESUMO

BACKGROUND: Entomopoxviruses (EVs) form two types of inclusion body: spheroids, which contain virions, and spindles, which do not. The authors tested whether the spindles from a coleopteran EV, Anomala cuprea EV (ACEV), enhanced the insecticidal activity of a commercial Bacillus thuringiensis (Bt) formulation and the susceptibility of scarabaeid pest species in Japan to the virus's spheroids, to assess whether ACEV inclusion bodies are potential biological control agents for pest insects. RESULTS: Peroral inoculation with both ACEV spindles and the Bt toxin only or the complete Bt formulation shortened the survival and increased the mortality of treated insects compared with those of insects inoculated with Bt without the spindles (8-38 h of decrease in LT50 values among assays). ACEV showed high infectivity to a major scarabaeid pest species in Japanese sugar cane fields. CONCLUSION: The results suggest that spindles or the constituent protein fusolin can be used as a coagent with Bt formulations, and that fusolin coexpression with a Bt toxin in crops might improve the insecticidal efficacy. In addition, the spheroids are potential biocontrol agents for some scarabaeid pests that are not easy to control because of their underground habitation.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/farmacologia , Química Farmacêutica/métodos , Besouros/efeitos dos fármacos , Endotoxinas/química , Endotoxinas/farmacologia , Entomopoxvirinae/química , Proteínas Hemolisinas/química , Proteínas Hemolisinas/farmacologia , Corpos de Inclusão/química , Controle Biológico de Vetores/métodos , Animais , Toxinas de Bacillus thuringiensis , Entomopoxvirinae/metabolismo , Corpos de Inclusão/metabolismo , Controle Biológico de Vetores/instrumentação
15.
Phytochemistry ; 84: 47-55, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23009879

RESUMO

Wheat (Triticum aestivum) and rice (Oryza sativa) are two of the most agriculturally important cereal crop plants. Rice is known to produce numerous diterpenoid natural products that serve as phytoalexins and/or allelochemicals. Specifically, these are labdane-related diterpenoids, derived from a characteristic labdadienyl/copalyl diphosphate (CPP), whose biosynthetic relationship to gibberellin biosynthesis is evident from the relevant expanded and functionally diverse family of ent-kaurene synthase-like (KSL) genes found in rice the (OsKSLs). Herein reported is the biochemical characterization of a similarly expansive family of KSL from wheat (the TaKSLs). In particular, beyond ent-kaurene synthases (KS), wheat also contains several biochemically diversified KSLs. These react either with the ent-CPP intermediate common to gibberellin biosynthesis or with the normal stereoisomer of CPP that also is found in wheat (as demonstrated by the accompanying paper describing the wheat CPP synthases). Comparison with a barley (Hordeum vulgare) KS indicates conservation of monocot KS, with early and continued expansion and functional diversification of KSLs in at least the small grain cereals. In addition, some of the TaKSLs that utilize normal CPP also will react with syn-CPP, echoing previous findings with the OsKSL family, with such enzymatic promiscuity/elasticity providing insight into the continuing evolution of diterpenoid metabolism in the cereal crop plant family, as well as more generally, which is discussed here.


Assuntos
Alquil e Aril Transferases/metabolismo , Diterpenos/metabolismo , Grão Comestível/química , Triticum/enzimologia , Alquil e Aril Transferases/genética , Sequência de Aminoácidos , Biocatálise , Diterpenos/química , Grão Comestível/enzimologia , Grão Comestível/metabolismo , Conformação Molecular , Filogenia , Alinhamento de Sequência
16.
Phytochemistry ; 84: 40-6, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23009878

RESUMO

Two of the most agriculturally important cereal crop plants are wheat (Triticum aestivum) and rice (Oryza sativa). Rice has been shown to produce a number of diterpenoid natural products as phytoalexins and/or allelochemicals--specifically, labdane-related diterpenoids, whose biosynthesis proceeds via formation of an eponymous labdadienyl/copalyl diphosphate (CPP) intermediate (e.g., the ent-CPP of gibberellin phytohormone biosynthesis). Similar to rice, wheat encodes a number of CPP synthases (CPS), and the three CPS characterized to date (TaCPS1-3) all have been suggested to produce ent-CPP. However, several of the downstream diterpene synthases will only react with CPP intermediate of normal or syn, but not ent, stereochemistry, as described in the accompanying report. Investigation of additional CPS did not resolve this issue, as the only other functional synthase (TaCPS4) also produced ent-CPP. Chiral product characterization of all the TaCPS then established that TaCPS2 uniquely produces normal, rather than ent-, CPP, thus, providing a suitable substrate source for the downstream diterpene synthases. Notably, TaCPS2 is most homologous to the similarly stereochemically differentiated syn-CPP synthase from rice (OsCPS4), while the non-inducible TaCPS3 and TaCPS4 cluster with the rice OsCPS1 required for gibberellin phytohormone biosynthesis, as well as with a barley (Hordeum vulgare) CPS (HvCPS1) that also is characterized here as similarly producing ent-CPP. These results suggest that diversification of labdane-related diterpenoid metabolism beyond the ancestral gibberellins occurred early in cereal evolution, and included the type of stereochemical variation demonstrated here.


Assuntos
Alquil e Aril Transferases/metabolismo , Diterpenos/metabolismo , Grão Comestível/metabolismo , Proteínas de Plantas/metabolismo , Triticum/enzimologia , Algoritmos , Alquil e Aril Transferases/genética , Sequência de Aminoácidos , Biologia Computacional , Diterpenos/química , Filogenia , Proteínas de Plantas/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência
17.
Virus Genes ; 45(3): 610-3, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22899338

RESUMO

The Epinotia aporema Granulovirus GP37 protein gene has been identified, located, and sequenced. This gene was similar to other baculovirus gp37, to entomopoxvirus fusolin gene, and to the chitin-binding protein gene of bacteria. Sequence analysis indicated that the open reading frame is 669 bp long (the smallest gp37 sequenced at present) and encodes a predicted 222-amino acid protein. This protein is glycosylated and specifically recognized by an entomopoxvirus fusolin antiserum. The pairwise comparison of EpapGV gp37 gene product with all the baculovirus sequences in GenBank yields high similarity values ranging from 45 to 63 % with Cydia pomonella Granulovirus gp37 being the most closely related. The phylogenetic analysis interestingly grouped the granuloviruses in a cluster more closely related to entomopoxviruses than to nucleopolyhedroviruses, suggesting a possible horizontal transfer event between the granulovirus group and the entomopoxvirus group.


Assuntos
Entomopoxvirinae/genética , Genes Virais , Granulovirus/genética , Proteínas do Envelope Viral/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Entomopoxvirinae/classificação , Entomopoxvirinae/imunologia , Entomopoxvirinae/patogenicidade , Transferência Genética Horizontal , Glicosilação , Granulovirus/classificação , Granulovirus/imunologia , Granulovirus/patogenicidade , Soros Imunes/imunologia , Lepidópteros/virologia , Fases de Leitura Aberta , Filogenia , Homologia de Sequência de Aminoácidos , Proteínas do Envelope Viral/imunologia , Proteínas Virais/genética , Proteínas Virais/imunologia
18.
Biosci Biotechnol Biochem ; 76(3): 544-50, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22451398

RESUMO

DELLA proteins are negative regulators of the signaling of gibberellin (GA), a phytohormone regulating plant growth. DELLA degradation is triggered by its interaction with GID1, a soluble GA receptor, in the presence of bioactive GA. We isolated cDNA from a spliced variant of LsDELLA1 mRNA in lettuce, and named it LsDELLA1sv. It was deduced that LsDELLA1sv encodes truncated LsDELLA1, which has DELLA and VHYNP motifs at the N terminus but lacks part of the C-terminal GRAS domain. The recombinant LsDELLA1sv protein interacted with both Arabidopsis GID1 and lettuce GID1s in the presence of GA. A yeast two-hybrid assay suggested that LsDELLA1sv interacted with LsDELLA1. The ratio of LsDELLA1sv to LsDELLA1 transcripts was higher in flower samples at the late reproductive stage and seed samples (dry seeds and imbibed seeds) than in the other organ samples examined. This study suggests that LsDELLA1sv is a possible modulator of GA signaling in lettuce.


Assuntos
Giberelinas/metabolismo , /metabolismo , Proteínas de Plantas/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , DNA Complementar/genética , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Proteínas de Plantas/química , Proteínas de Plantas/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Superfície Celular/metabolismo
19.
Biosci Biotechnol Biochem ; 75(12): 2398-400, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22146725

RESUMO

A previous study generated lettuce (Lactuca sativa) mutant lines tagged by retrotransposon Tnt1 from tobacco (Nicotiana tabacum) and identified a homozygous mutant, Tnt6a, that exhibited severe dwarf phenotype. Here we show that Tnt1 is inserted into the intron of gibberellin biosynthetic gene LsGA3ox1 in Tnt6a mutants. Expression analysis suggests that LsGA3ox1 is nearly knocked out in the Tnt6a mutants.


Assuntos
Genes de Plantas/genética , Giberelinas/biossíntese , /metabolismo , Mutação , Sequência de Bases , Íntrons/genética , Retroelementos/genética
20.
J Insect Sci ; 11: 92, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21870980

RESUMO

Some intracellular symbionts of arthropods induce a variety of reproductive alterations in their hosts, and the alterations tend to spread easily within the host populations. A few cases involving the spread of alteration-inducing Wolbachia bacteria in natural populations with time have been reported, but the investigations on the increasing trend in counteracting the bacterial effect on hosts in natural populations (i.e., increased resistance in hosts against the alterations) have been limited. In the present study, the prevalence of an alteration, killing of male Hypolimnas bolina (L.) (Lepidoptera: Nymphalidae) butterflies by their inherited Wolbachia strain in the wild in Japan, was surveyed over a continuous 50-year period, which is far longer than ever before analyzed in studies of dynamics between reproductive alteration-inducing symbionts and their host arthropods. Thus, the results in this study provide the first instance of a long-term trend involving a change in reproductive alteration; and it strongly suggests a change in the opposite direction (i.e., suppression of male-killing) in natural populations. This change in the current combination of the Wolbachia and butterflies appears to be dependent upon the host taxon (race).


Assuntos
Borboletas/microbiologia , Interações Hospedeiro-Patógeno , Wolbachia/fisiologia , Animais , Evolução Biológica , Borboletas/genética , Borboletas/imunologia , Feminino , Masculino , Reprodução , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...